Name: KEY ## Properties of sound waves: | Match the following wave quantities to the <i>mini-definition</i> . Place the letter in the blank. A. Frequency B. Period C. Speed D. Wavelength E. Amplitude | |---| | 1. How fast the wave moves through the medium. | | 2. How long the wave is. | | | | 4. How much time it takes the particles to complete a vibrational cycle. | | E 5. How far the particles vibrate away from their resting position. | | 6. A sound wave with its characteristic pattern of compressions and rarefactions is shown below. A metric ruler is included below the pattern. The wavelength of this sound wave is 1.6 m. | | 23-07 | | 21.6 Մ բ այնորուրարարարարարարարարարարարարարարարարարա | | 7. The pitch of a sound is directly related to the of the sound wave. (a) frequency b. wavelength c. speed d. amplitude | | 8. High pitched sounds have relatively large and small a. period, wavelength b. speed, period C. requency, wavelength d. period, frequency e. amplitude, wavelength f. amplitude, speed | | 9. As the frequency of a sound increases, the wavelength and the period a. increases, decreases b. decreases, increases c. increases, increases, decreases, decreases | | 10. A sound wave is described as being 384 waves/s. This quantity describes the wave's a) frequency b. period c. speed d. wavelength | | 11. The speed of a sound wave depends upon the a. frequency of the wave b. wavelength of the wave c. amplitude of the wave d. properties of the medium through which it moves | | 12. If a person <u>yells</u> (as opposed to whispering), then it will cause a. air molecules to vibrate more frequently b. the sound wave to travel faster c. air molecules to vibrate with a greater amplitude | | 13. If a person yells (as opposed to whispering), then it will cause a. the pitch of the sound to be higher b. the speed of the sound to be faster c. the loudness of the sound to be louder | | | Doppler Effect: | |--------------------|--| | 14. | TRUE of FALSE: | | | Ken Fused is standing on a corner when a police car passes by with its siren on. Ken hears a different pitch when the police car is approaching him than when it is past him. This is because the siren on the front of the car is set to a higher pitch than the siren on the back of the car. | | 15. | Describe the real reason Ken Fused observes what he does. | | | The sound source moves toward him causing the waves to get there quicker which sounds to him like a higher frequency sound. | | 6. | TRUE OF FALSE: | | | The Doppler shift is a phenomenon which is observed only of sound waves. | | | Explain your answer: | | | It is also observed in electromagnetic waves (light) when looking at | | 17. | It is also observed in electromagnetic waves (light) when looking at TRUE of FALSE; galaxies and other star systems. | | | As the source of a sound approaches an observer, the loudness of the sound increases. This is an example of the Doppler Shift. | | | Explain your answer: | | | Doppler shift is only related to a shift (or change) in frequency, | | | NOT a change in amplitude (loudness). | | wav
trav
The | automobile is traveling away from Jill and towards Jack. The horn is honking, producing a sound re consisting of the familiar pattern of alternating compressions and rarefactions which rel from their origin through the surrounding medium. circles on the diagram at the right represent wave | | fron | ts; you can think of the wave fronts as the pressions. Observe that the compressions are closer | | | other in front of the car compared to behind the car. | | 8. | Towards which person do the sound waves travel the fastest? | | | a. Jack b. Jill c. Both the same. | | 19. | Who will hear the highest frequency? a. Jack b. Jill c. Both the same. | | 20. | The Doppler effect can be described as the difference between the frequency at which sound waves are produced and the frequency at | Idea frequency at which sound waves are produced and the frequency at which they are observed by the hearer. It occurs when the distance between the source of a sound and the observer is changing. As the source approaches an observer, the observer hears the pitch (or frequency) to be _____ (higher, lower). As the source moves away from an observer, the observer hears the pitch (or frequency) to be _____ (higher, lower). Sound Intensity. 21. The decibel system is a system used to express the intensity of a sound. It is based on the powers of 10. A decibel is 1/10-th of a Bel. The sound level in Bels describes the power on 10 by which that sound is more intense than the so-called *threshold of hearing* (TOH). A 1-Bel sound is 10¹ times more intense than the TOH; it is a 10-decibel sound. A 2-Bel sound is 10² times more intense than the TOH; it is a 20-decibel sound. Use your understanding of the powers of 10 to complete the following table. (NOTE: different literature sources cite different intensity levels.) | Description of Sound | Intensity
(W/m ²) | Sound Level
(Bels) | Sound Level
(decibels) | |---|----------------------------------|-----------------------|---------------------------| | Threshold of Hearing | 1 x 10 ⁻¹² | 0 | 0 | | Broadcasting Studio | 1 x 10 ⁻¹⁰ | 2 | 20 | | Mosquito Buzzing | 1 x 10 ⁻⁸ | 4 | 40. | | Normal Conversation | 1 x 10 ⁻⁶ | 6 | 60 | | Vacuum Cleaner | 1 x 10 ⁻⁵ | 7 | 70 | | Busy Traffic | 1×10^{-4} | 8 | 80 | | Power Mower or Thunder | 1×10^{-2} | 10 | 100 | | Twisted Sister Rock Band (Mr. H's favorite) | 1×10^{-1} | 11 | 110 | | Threshold of Pain | 1 | 12 | 120 | | Jackhammer or Nearby Plane (18') | 1×10^{1} | 13 | 130 | | Explosions | 1×10^2 | 14 | 140 | - **2**2. Compare the decibel level of the following sounds. - a. If Sound B is 10 times the intensity of Sound A, then it's decibel level is _____ higher. - b. If Sound C is 100 times the intensity of Sound A, then its decibel level is **20** higher. - c. If Sound D is 1000 times the intensity of Sound A, then its decibel level is 30 higher. - d. If Sound I is 10000 times the intensity of Sound A, then its decibel level is 40 higher. - 23. How many times more intense is a 18 - a. ... a 30 dBel sound than a 20 dB sound? 20 10^{x} where x = 1 or 10 times larger b. ... a 40 dB sound than a 20 dB sound? 20 10^{x} where x = 2 or 100 ... - c. ... a 80 dB sound than a 20 dB sound? 60 10^x where x = 6 or /000000 " " - d. ... a 80 dB sound than a 50 dB sound? 30 10^{x} where $x = \frac{3}{2}$ or $\frac{1000}{2}$ % - e. ... a 92 dB sound than a 62 dB sound? **30** 10^{x} where x = 3 or 10^{00} ...